Segregation Analysis for Complex Modes of Inheritance
RecINA C. ELANDT-JOHNSON!?

INTRODUCTION

In studies of human traits, observations are often taken on each member of a sibship
(called simply a family), and several families are examined in a study. Statistical
methods of handling such data are known as segregation analysis.

In this paper, individuals possessing a trait under consideration will be called
“affected”; otherwise they will be called “normal.”

Let 6 be the probability that a child born in a family of certain mating type will
be affected. Thus, the probability that in a family of size s there will be r affected
children is

Pr(r) = (i)o’(l -0 r=0,1,...,s. 1)

The probability function will be called the segregation distribution, and 6 will be called
the segregation parameter.

Consider three parental phenotype mating types: Normal X Normal, Normal X
Affected, and Affected X Affected. The early methods developed in segregation
analysis apply to the cases with only one segregation distribution within a given
parental phenotype mating type. Usually this takes place when a trait is a simple
recessive or a dominant with a very low gene frequency (a rare trait). However,
if a trait is a common dominant (i.e., the frequency of the gene 4 is not too low)
or the mode of inheritance is complicated by other parameters such as incomplete
penetrance or differential viability or can be controlled by two or more loci, more
than one kind of mating is distinguished, each with different segregation distribution
within a given phenotype mating type. These matings shall be called segregation pat-
terns. Suppose, for example, that a trait is a single, common dominant. Within a
phenotype mating type Dominant X Dominant, there are genotype mating types:
AA X AA and A4 X Aa (both belonging to a segregation pattern with 6; = 1)
and Aa X Aa (with 6, = 2).

Statistical methods which take into account different segregation patterns within
a given phenotype mating type will be called complex segregation analysis. A great
advance in this field has been effected by Morton. He and his co-workers (see Chung
et al. 1959; Morton 1959, 1962, 1963; Barrai et al. 1965; Dewey et al. 1965; Mi 1967)
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130 ELANDT-JOHNSON

derived models which apply when the proportion of sporadic cases, inbreeding co-
efficient, and prevalence are introduced, in addition to the segregation parameter 6.
Peritz (1966) discussed models in which the reproductive behavior of parental geno-
types is taken into account.

The objective of this paper is to present a general-purpose model for complex
segregation analysis under fairly general conditions. The models derived by Morton
and his co-workers utilize the same ideas, and it can be shown that their models can
be considered as special cases of the general-purpose model which will be discussed
in the next section. Two models, one for incomplete penetrance and one for double
common recessives, will be given to demonstrate the use of the general model.

GENERAL-PURPOSE MODEL IN COMPLEX SEGREGATION ANALYSIS

Let Hybe a certain hypothesis about the mode of inheritance of a trait. Two pheno-
typic classes are distinguished: affected and normal. Consider here the case when
the ascertainment is through the affected children, with constant ascertainment prob-
ability = (0 < = < 1), so that the distributions of affected children in segregating
families are truncated binomial distributions. In constructing a model for Hy, the
following steps will be useful:

1. For a given parental phenotype mating tvpe, write down all the genotype
mating types which can potentially produce affected children. Assuming that the
population is in equilibrium, evaluate their expected proportions.

2. Group the genotype mating types according to their segregation patterns.
Let m be the number of distinct segregation patterns, and 6,, the segregation param-
eter for the /th pattern (t = 1,2, ..., m).

3. Let Py, be the probability that a family of size s within the /th segregation
pattern has r affected children and is ascertained. Thus

Po.=[1—-(1— w)'](‘;)oi(l —0)r, (2)

t=1,2,...,mr=1,2,...,s;s=12...,S. The probability Q that such a
family has been ascertained at least once is

Q[, = ,;ZIPt” = 1 - (1 - 7!'0()3 . (3)

4. Let ¢, be the expected proportion of families within the /th segregation pattern,
with

Z¢t =1. (4)

5. Let P, be the probability that an ascertained family of size s has r affected

children. Thus,
P, = (étﬁ:Pm)/(g@Qu) . (5
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The probability in (5) is a weighted sum of the proportions P Notice that
for m = 1 the probability in (5) takes the known form

n-Q- w)'](‘:)ora — g

1= (1 = 20y ©)

Pn=

6. In the general case, the segregation probability, 6,, might be a function of some
other parameters such as penetrance, different viabilities of gametes, etc. Suppose
that there are g independent parameters, 3’ = (B4, B, ..., By), so that 6, = 6,(8),
t=1,2, ..., m. Also, the proportions ¢; might be functions of the g parameters
8’ = (By, B2, - . . , By) mentioned before, and additionally a function of f independent
parameters @’ = (a1, az, ... , a;) (for instance, the o’s can be gene frequencies).
Let us write the vector (a’, 3’) in the convenient form

(a”@l)=(ah""afyﬂl)""ﬂﬂ)=Y,=(71’727°°-17M)’ (7)

with M = f + g. Thus, in the general case, the probabilities Py, defined in (5), can
be functions of M independent parameters ¥’ = (y1, 7vs, - - - , var), that is,

Prs = Prt(‘Y) . (8)

7. Let n, be the number of families, each of size s, ascertained for a given pheno-

typic mating type, and let a,s be the observed number of families with r affected
children, with

Zdn = Ns . (9)
r=1

For given #,, the quantities a,, can be considered as random variables having a multi-
nomial distribution with parameters P,(y), respectively, that is,

a
8 Pr:‘
Pr(ais, - . « 5 Gosjy) = n.,!I_I1 4 !) . (10)
Notice that
E(ay) = nPrs, r=1,2,...,5. (11)

8. For particular ascertainments: (¢) For truncated complete (= = 1) all for-
mulas are valid when substituting = = 1. () For single ascertainment (7 — 0),
use the approximation

1—-(l—mr=rm; 1—(1—70) = s, = Q. (12)

Substituting (12) into (5) and denoting
. s — 1\ -
Pr= (02 oA =0y, (13)
it can be shown that (5) takes the form

P, =P, = (g:,qstPin) / (g@o,). (14)
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9. The models can be generalized to situations in which #, is also a random vari-
able, and ascertainment is through the parents.

LikELIHOOD EQUATIONS AND INFORMATION MATRIX

Denote
A= Ars(‘Y) = ;d’lPtn and B = Brs(T) = thﬁzQu . (15)
= t=
The probability in (5) can be written in the more convenient form
Asly) A
P,y = P, == . 16
€] Bra(y) B (16)

The maximum likelihood estimators of the M functionally independent parameters
v = (v, Y2, - - -, Yar) are to be found.

For a given sample of #, families, each of size s, the likelihood function denoted
by L, is given by (10). Taking into account (16) the logarithm of L, is obtained, that
is,

log L, = Const + > [log A — log Blas . a7
r=1

The logarithm of the overall likelihood function, L, say, is

s
log L =Y logL,, (18)
8=1
where S is the number of different family sizes.
Let ui(r) = uily|7) denote the individual score with respect to the parameter
v, for given s, in the rth multinomial class. We have

walr) = walelr) = 4 5~ (19

fori=1,2,... , M;r=1,2,...,s.
It should be noted that in the general case the derivative d4/9v: can be of the
form

94 _ 3 [aA 9. 94 QPm], (20)

—(_971' - t=1 %W aPm 8'yi

i=1,2,..., M. The derivative dB/dv has a similar form. The total score for the
sample of #, families, each of size s, Us, say, is

Uy, = Zlars“is(’) , i=1,2,...,M; (21)
and the overall score with respect to the parameter v, U, say, is

S
Ui=ZUisy 1=12,..., M. (22)
s=1



COMPLEX SEGREGATION ANALYSIS 133

To obtain the maximum likelihood estimates, solve M (linearly independent) equa-
tions of the form

[}_3_4__13_3]=0, (23)

1=12...,M.
A unique set of solutions exists provided

M
M<;(s—1),

which is usually the case.
The elements of the expected information matrix, I, are

Iiis = ZE(arx)u?x(r) ) 1= 1) 27 ceey M7
=t (24)
Iijs = ZE(ars)uis(r)uja(f) ’ 1 #] y i,] = 1, 2, ey M.
r=1
The elements of the overall information matrix, I, are
S S
I,','= EI,',‘S; I,'j= EIU&’ 'I:,j= 1, 2,...,M, (25)
8=1 8=1
so that
S
I1=>1I,. (26)
s=1

TEeSTING HYPOTHESES

1. Suppose that all M parameters are specified by the null hypothesis Hy: v = v,.
Let

Us(vo) = [Uns(y0) , Uzs(¥0) 5 - -+, Uss(y0)] (27

be the vector of scores Uy, defined in (21), and evaluated at the point ¥ = ¥, and
I(v0) be the expected information matrix. Thus the statistic

s
X'otal = §U§(Yo)ls_l(70) U.(vo) (28)

is approximately distributed as x? with 3M(2S — M — 1) degrees of freedom.*
Notice that the summation begins with s = 2, since the families with s = 1 child
contribute nothing to X#ota1. The statistic X201 can be used in testing whether the
data as a whole fit the hypothesis Ho: vy = .

* When s < M, the rank of the matrix I, is equal to s — 1, so that for s < M each term Uil; U, in
(28) contributes only (s — 1) degrees of freedom. On the other hand, for s > M, each of the remaining
(S — M) terms contributes M degrees of freedom. Hence the total number of degrees of freedom is
142434+ M —1)+ S — MM = [MM — 1)]/2 + M(S — M) = 1M©2S — M — 1).
Notice, of course, that when families of certain sizes s < M are missing, the formula for the num-
ber of degrees of freedom should be appropriately modified.
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If X%ota1 is significant, a further splitting up of the sum (28) would be useful. Let
s s
Ulyo) = ;Uc(‘fo) and  I(yo) = le.(‘fo) (29)

be the overall vector of scores and the expected information matrix of combined data
from families of all sizes. The statistic

X&omb = U’ (yo))I (o) U(yo) (30)

is approximately distributed as x? with M degrees of freedom.
Finally the statistic

Xbits = XTotal — XComb (31)

is approximately distributed as x2 with $M(2S — M — 1)—M =3M(25S — M — 3)
degrees of freedom, and is used as a test criterion for heterogeneity.

2. If all M parameters are not specified, substitute into (28) the pooled esti-
mates, ¥ = (f1, ¥2, ..., ¥u), say, obtained by solving system (23). Thus the statistic

S
Xotal = Xbisr = ;U.(%)r.‘@) U,(y) (32)

is approximately distributed as x2 with $M(2S — M — 3) degrees of freedom.

3. If among M parameters only K are specified, then the statistics (28) and (30)
can be evaluated for K of the y¢’s and M — K of the 4’s. The degrees of freedom have
to be appropriately decreased by subtracting (M — K) from the degrees of freedom
given in (1).

Some applications are now demonstrated.

SEGREGATION ANALYSIS FOR A SINGLE RECESSIVE
WITH INCOMPLETE PENETRANCE

If a genotype aa expresses itself as if it were 44 (or Aa), the gene a is said to be
incompletely penetrant in a recessive. A similar situation may occur with the gene A,
which might be not penetrant in the heterozygote 4a. This can also be extended to
traits controlled by more than one locus. The expected proportion of phenotypes
which do, in fact, express themselves is called the peneirance parameter, denoted by 8.

Incomplete penetrance is a complicated phenomenon. It probably depends on the
interaction of allelic (or even nonallelic) genes, but environmental conditions may
play quite a significant role. It can also be controlled by a separate locus, either linked
or independent. Thus this problem cannot be solved uniquely, and different segrega-
tion models have to be constructed for different assumptions.

A model is presented here for which these assumptions are rather simplified.

Let A and a be dominant and recessive alleles, respectively, at a single locus.
Assume that: (1) the phenotypic expression of genotype aa is incompletely penetrant;
(2) penetrance is associated with the locus under consideration or closely linked to it;
(3) the environment has very little (random) effect and can be neglected; and (4) there
is no physiological effect of genotypes or age of the parents. If these assumptions do
not hold, at least approximately, the model will be not valid.
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Table 1 exhibits segregation models in segregating families and is self-explanatory.
The segregation analysis for this model is as follows:

PARENTAL PHENOTYPE MATINGS NORMAL X AFFECTED

Using the notations introduced in the second section,

1=k =q(1—8)/[2p+ q(1 —B)]; 33)
¢:=1—h=2p/[2p +q1 —B)],
TABLE 1

SEGREGATION MODEL FOR SIMPLE AUTOSOMAL RECESSIVE WITH
INCOMPLETE PENETRANCE (SEGREGATING FAMILIES)

EXPECTED PROPORTIONS OF MATINGS
WaicHE CAN PRODUCE AFFECTED CHILDREN
SEGREGA-
TION Pa- SEGREGATION
In a Given Parental RAMETER DISTRIBUTION
In a Population Mating Type @)
(#¢)

MATINGS

One Parent Unaffected

a1 q(1—8)
aaXaa....... 2¢8(1—0) 2p+9(1—B) B (i)ﬁ'(l —B)r
=h

2
aaXda......| 4p¢8 m 38 (:)(%ﬁ)'(l_%ﬂ)"_'

=1—h

Total. .. ... 2¢%8[2p+q(1—B)] 1 Y P

Both Parents Unaffected

—R)2 M $\ar —R)s—r
ra=p graa-pr| ¢ | ()ra-e

=2

aaxda. .. ... 1pg(1—p) ol w | (asra—e

=2h(1—h)

4P2 1 S\ r s—r
AaXAda...... 4p2g ZpTq(1=B)F B (r)(zﬁ) (1-18)

= (1—h)2

Total. . .... 2p+q(1—B)]2 S P R
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where p = 1 — ¢. Further, 6, = 8 and 6, = 18. Hence

P = (1= (1 = =) — 9

(34)
P = (1= (1= o)(3)ar0 - 19,
and
Ou=1- (=8, Qu=1- (1= i), (33)
Finally,
P = Pu(8, ) = hPirs + (1 — )Py (36)

ths + (1 - h)QZs )
The particular cases, # = 1 and = — 0, are straightforward.

PARENTAL PHENOTYPE MATINGS NORMAL X NORMAL

The second (bottom) part of table 1 is self-explanatory. The coefficients ¢1, ¢s,
o3 are h?, 2h(1 — k), (1 — k)2, respectively. The probabilities Pi., Pars and Qis,
Q2 are the same as in (34) and (35), respectively. Additionally,

Py =1t = (1= 0(})asr — 19, (37
and
O =1—(1-18). (38)
The multinomial parameters, P, are

hz.Plra + 2h(1 - h)P2ra + (1 _ h)2P3rs
Q1 + 2h(1 — B)Q2 + (1 — £)?Qss -~

The logarithms of the likelihood functions, Ls(8, ¢) and L(B, ¢), for both parental
phenotype mating types are straightforward to evaluate, using the results of section
3 (for details, see Appendix). This model is illustrated by the following example:

Prs = Prs(B, q) = (39)

Example 1

Rheumatic fever is a certain acute form of rheumatoid arthritis. There is some
doubt whether heredity plays an important role in this disease (O’Brien et al. 1965).
However, some investigators believe that heredity plays some role, and it is usually
suggested that it might be a single autosomal recessive.

Table 2 presents some data from Stevenson and Cheeseman (1953) on rheumatic
fever in children from three to 18 years old in 388 families with both parents un-
affected, each family ascertained by one proband.

Although one may assume that the ascertainment was single, he also should
notice that there are only a few families with more than two affected children, and
the assumption 7 — 0 might be incorrect. Since 7 is unknown, the analysis is pre-
sented for two limiting cases: # = 1 and = — 0.

The analysis was performed using an 1BM 360/75 computer. The program in
FORTRAN 1Iv was written by Mrs. Ellen Kaplan. The following results were obtained:
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a) Complete (truncated) ascertainment (= = 1). The ML-estimates are: 8 = 0.2339,
¢ = 0.3378, and the estimated variance-covariance matrix is

D V6D [ 1.3015 —0.4654]
@, ¢ = v@, ¢ = .
! U= 04654 0.1675

The X%ota1 = Xbir; = 36.81 with 21 df. It is not significant at the significance level
a = .01, but it is significant at & = .05.

TABLE 2
JUVENILE RHEUMATISM IN 388 FAMILIES RECORDED BY ONE AFFECTED CHILD
No. oF FAMILIES WITH r AFFECTED CHILDREN ToTAL
Bs No. oF
No. oF AFFECTED
FaMILy No. oF
SizE FAMILIES Arr CHIL- . CHILDREN
s s DREN No. of Affected Children (r) s
sng Zfau
1 2 3 4 5 r=1

1......... 19 19 19 19
2. 67 134 66 68
3o 73 219 66 82
4o 72 288 63 81
S 46 230 38 54
6......... 43 258 33 55
T, 23 161 19 27
8. ... 21 168 14 29
9o 13 117 8 19
10......... 8 80 2 20
11......... 1 11 1 1
12......... 1 12 T 1
13......... 1 13 1T 1
Total. ... 388 1,710 331 48 7 1 1 457

NoTte.—Both parents unaffected.
SourcE.—Stevenson and Cheeseman (1953).

b) Single ascertainment (w — 0). Here, § = 0.124, § = 0.3310 and
5.8353 — 1.0945]

reg=v ,‘)=[
! .4 —1.0945  0.2055

Then XTow = Xbirr = 30.56 with 20 df. (Note that in the case of single ascertain-
ment, s has to be replaced by s — 1 so that the number of degrees of freedom is
[(M —1) (M —2)]/24+ M(S — M — 1). Here X%ota1 is not significant at a = .05.

The data “almost” fit the hypothesis of a single recessive with incomplete pene-
trance, although the fit is not too obvious. It would be useful to have more (medical)
information.

A MODEL OF SEGREGATION ANALYSIS FOR A COMMON
AvuTtosoMAL DOUBLE RECESSIVE

It is suspected that a trait might be a double recessive, aabb, and the frequencies
of the genes ¢ and b are both very low (i.e., the trait is rare). The parental matings



TABLE 3

SEGREGATION MODEL FOR (COMMON) DOUBLE AUTOSOMAL
RECESSIVE (SEGREGATING FAMILIES)

EXPECTED PROPORTIONS OF MATINGS

Waice CAN PRODUCE AFFECTED CHILDREN SEGREGA-
TION PA- SEGREGATION
MATINGS RAMETER DISTRIBUTION
In a Given Parental (6s) (UNDER Ho)
In a Population Mating Type (UNDER Ho)
(¢2)
One Parent Unaffected
N —
AabbXaabb. ... .| 4p1gigs ;f’j‘r% 1 3 (,)(%)r(%)e ,
s _
aaBbXaabb. . ... 4qipags E%J 3 (r)(%)'(%)’ ’
2 s _
AaBbxaath. .| $paipat | 2hbi_ r | Oerar
Total........ 433 (p1+ ) 1
Both Parents Unaffected
AabbX Aabb. .| 4pigie} bld: b | Qo
(p1+22)? r
3, 3 2P1q11‘)2q2 —L\2 1 (S) 1yr(3)s—r
aaBbX Aabb. . .. 8P1q1PQQ2 (P1+P2)2 (1 h) 4 r (4) (4)
soBbXaaBb. .| dqipid SO b Qe
(p1t+p2)? 7
2P2 s
AaBOX Aakd. .| 165Gpa | il | Qe
(p1+22) r
I 2h(1—h)
Pipog S\ (1yr(zys-r
AaBbXaaBb. . .. 16p:gipigs ﬁ_—;& H (,)(%) @
4p1q1ps -
AaBbX AaBb. .. 16pigipsgs (—P% = B =S C)(T%)'(%)" "
Total. .. ... .. 4¢igs(pr+ p2)? R
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Normal X Affected are likely to be 4eBb X aabb, and the parental matings Normal
X Normal are likely to be 4aBb X AaBb. However, if a trait is common, more than
one segregation pattern can occur within a given parental phenotype mating type.
Table 3 exhibits all genotype matings, grouped into appropriate segregation pat-
terns. This table is self-explanatory. Under the null hypothesis that the trait is a dou-
ble recessive, the segregation distributions are given in the last column of table 3

PARENTAL MATINGS NORMAL X AFFECTED

Let 6 be the segregation parameter for the matings Single Heterozygote X Double
Recessive. From table 3,0, = 60,0, = 30,and ¢1 =1 — &, ¢ = k.

PARENTAL MATINGS NORMAL X NORMAL

Let 0 be the segregation parameter for Single Heterozygote X Single Heterozygote
(see table 3). We have 8; = 6, 6, = 36, 6; = 10, and ¢1 = (1 — )2, ¢ = 2h(1 — h),
¢3 = h2.

Suppose that the hypothesis Hy: § = 8, (i.e., for Normal X Affected, Ho: 6 = §;
for Normal X Normal, Hy: 6§ = %) is to be tested. For each mating type, construct
the likelihood function L(8, %) as described in section 3, find the pooled estimators,
6 and %, and calculate X%oea1, X&omb, and Xbis with 6 given the specified value, 8,
and unspecified % put equal to A.

Example 2

Psoriasis is a chronic inflammatory disease of skin characterized by rounded
erythematous dry scaling patches of various sizes covered by grayish-white scales. It
has been suggested that it might be an autosomal double recessive (Steinberg et al.
1951). The data in table 4 are taken from the paper by Steinberg et al. (1951) and
give the distributions of affected patients in 409 families, with both parents un-
affected.

Although all patients were probands, the analysis was performed for both limiting
cases, 7 = 1 and #— O, for the same reason as in example 1. Using the computer
program in FORTRAN IV, the following results were obtained:

a) Complete ascertainment (x = 1). Values obtained were § = 0.0991,
The variance-covariance matrix evaluated at 8 = 6y = 0.25 and 4 = £

0.6709 0.3175]
0.3175  0.1508]

h=0.7617.
=0.7617 is

(00, k) = VO, b)) = [

Here S =13, M =2, K = 1. To test the hypothesis Hy: 8 = 0.25, calculations
vield X%ota1 = 46.32 with 22 df, X3,mp = 36.61 with 1 df, and Xbirr = 9.71 with
21 df.

b) Incomplete ascertainment (w—0). Values obtained were 6 = 0.0549, h =
0.7958, and

.

)

i R 0.2710 0.1393
' ) = VO, B = [ ]
0.1393 0.0720
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Xhotal = 115.69 with 21 df, X&,m, = 110.20 with 1 df, and X3 = 5.49 with 20 df.

It appears from both analyses that the data are homogeneous (Xp;s in both cal-
culations is not significant), but the hypothesis that psoriasis is a common double
recessive trait does not fit the data.

TABLE 4
PSORIASIS IN 409 FAMILIES
No. oF FAMILIES WITH T

r AFFECTED CHILDREN N(())Tt;

FANILY No. oF No. oF ars AFFECTED

Size FAAMI.LIES ALL (:‘}?IL- CHILDREN

s ns D;‘:“ No. of Affected Children () s
) D s
r=1
1 2 3 | 4
1o 22 22 2 || Lo 22
2. 50 100 45 5 .. | 55
K 2 72 216 67 S 2 77
4.0 I 61 244 55 6 ... 67
S, 62 310 59 3 63
6......... 37 222 32 S 42
oo, 28 196 26 2 e 30
8. . ... 24 192 22 1 ) S 27
9. 24 216 22 2 | 26
10......... 13 130 11 1 1 16
11......... 7 77 5 /2 P 9
12......... 3 36 2 ) O 4
13......... 6 78 R P T, 1 9
Total..... 409 2,039 373 33 2 1 449
Ncte.—Both parents unaffected.
SoURCE.--Steinberg et al. (1951).
SUMMARY

The paper presents a fairly general model for segregation analysis, when more than
one segregation distribution can occur for a given parental phenotype mating type.
In this model the expected proportions of affected children in families, each of size s,
and within a given phenotype mating type, are functions of segregation parameters
weighted by the relative frequencies of different segregation patterns (i.e., matings
with distinct segregation distributions within a given phenotype mating). Models
for autosomal single recessives with incomplete penetrance and for common auto-
somal double recessives are derived. Two numerical examples, one for each model,
are calculated using a high-speed computer program.
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APPENDIX

DERIVATION OF LIKELIHOOD EQUATIONS FOR ESTIMATION OF
PENETRANCE PARAMETER $ AND GENE FREQUENCY ¢

COMPLETE ASCERTAINMENT

First consider the situation when the ascertainment is complete, that is, = = 1.

From formula (39), £ = ¢(1 — B)/[2 — ¢(1 4+ B)]. Thus,

Oh _ 20 —=B) ok _ _ 21 —g)
g [2—q@+BPE B  [2—qQ+BF

Let

x=(pa-o, x=()asra—1,

X = ($)asra - .

141

Notice that X, corresponds to P, (defined in equations [34] and [37] for ¢ = 1, 2, 3), with
m=1LetV,=1—-(1-=-p8),YV.=1—(1—13B8)°,V;=1— (1 — 16)* Also notice that
Y, corresponds to Q. (defined in equations [35] and [38] for ¢ = 1, 2, 3), with # = 1. Thus,

A = i2Xy + 2h(1 — )Xz + (1 — h)2X;,
B =2V, + 2h(1 — W) Vs + (1 — h)2Y,.

Hence,
A dA Ok ah
Bq = ok g " 2[(Xy — Xa) + (X1 — 2X2 + X3)] 3q°
B dB o oh
B ok aq 2[(Yy — V3) + h(Vy — 2V, + Ys)]ga,
and
w. — 104 19B
T A4 dq B aq’
Also,
_Q_).(_l P (S) r—1 —_ — — r p— 8—r—1
s T _ ST
-Qpa-o(5-1=3)-
Putting
r s—r
Zy=-— —
T 1-8
yields
¢
—a—ﬁ—l = XlZl

Similarly putting
r s—r

y =L - 1= =y ST
z=i-1=p) = a-G-iTh

(i)

(iir)

(iv)
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yields
X X
—6—6—2 = Xng and —é‘ﬁ—3= X;;Za .
Analogously
v . v -
g =S =BT =W, T = g — 4 = W,
0%
76_3 = is(1 = 1B) 1 = W;.
Therefore,

04 _ 94 0k | <~ 94 X, dh

98~ oh 9B + 243X, 98 (X2 — X3) + h(X1 — 2X, + X)) 98 “
+ X2 Zy + 2h(1 — B)XaZs + (1 — B)?X3Z4]
and
0B _ 3B ok | <~ 9B 39X, oh
i :9755—*_ ; 39X, 08 2[(Yy — Vi) + W(YV1 — 2V, + Ty) Er
+ [BPW1+ 2h(1 — W2 + (1 — k)*W3].
Also,
o 1O 10B a4 1
=498 B B Yoo =499 T B g v
The likelihood equations are
S 8 S
194 1 0B
DI e POy R ,
(v1i)
194 1 0B
8=1 E__ aB Grs s=l§a_6n8 B O

SINGLE INCOMPLETE ASCERTAINMENT (7 — 0)

Now put
-1 -1
= pa-om, x=(T1)eema- e,

X, = (57 ))asrma - 1,

where X, corresponds to P, given in (18). Putting ¥, = ¥, = V3 =1 (after a simple
modification of equation [14]),

A4 =nrXi+ (1l — X, + (1 — h)’Xs,
B =Y+ h(l—-HBY:+ i1 — 1)Y= 311+ h)?.

Analogous to complete ascertainment,

(viri)
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A oh
o = 32X, — X3) + h(4X: — 4X, + X3)] 3’
JB ok ok ()
3 = 32V, — Y5) + h(4Y, — 4V, + Yz)]a—q =31+ h)%‘,
where 34/dq is given in formula (i). Putting
_r—1 s—r _afr—1 _  s—r
a=g i 2= gm0yl
—afr-1t_s—r
2= - 7=5
yields
X X X,
55 = N, o5 = Nl 5 = Xl
Also,
or, _ 6_& = gﬁ =0
aB B B
Hence,
A oh
B 32X — X3) + h(4X: — 4X, + X)) B
(x)
+ [B2X1Zy 4+ k(1 — B)XoZ, + (1 — R)2XZ4]
and
dB oh oh
35 = M@Y= 1) + b4V, — 4¥e + ¥l 35 = (1 + B 35
The likelihood equations are
S 8 S
1 94 1 6B
Z A HB "
(xi)

s 1 04 51 9B
Z — —— Oy — -———n,=0.
S 4= 408 2 B 9B

The hkelihood equations for the problem of a double recessive can be obtained in a similar
manner. Notice that in this problem the parameters % and  are functionally independent,
so that the derivatives 04/dk, 34/80, and dB/0h, 0B/90 take a simpler form than in the
case of a single recessive with incomplete penetrance.
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